Problem 5.20

In each case, what does the scale read? )
a.
scale

a.) This, on the surface, looks complicated. In
fact, they are just being tricky in the sense that
there is no difference between Part a and Part b
(in both cases, something is holding the ball on
the left in equilibrium—it doesn’t matter

whether it’s a connection to a wall or a

connection to another hanging mass, the b.) wall
situation is essentially the same). In any case, all

the scale is doing is acting like an extension of

the string, which means the tension on one side

will be the same as the tension on the other.

With ideal pulleys and with the mass in

equilibrium, we can get that tension by

examining either hanging mass (we’ll do the one
on the left) using N.S.L.

With the free body diagram, we are ready to use N.S.L. and write:

= T=mg
= T=(5.00 kg)(9.80 m/s’)

=490N

Note that each of the algebraic terms (the T and the mg) were vector mg
MAGNITUDES. As such, the signs of those vectors had to be placed

manually into the N.S.L. expression. That is why you see a negative sign in front
of the “mg” term. That vector is directed downward in the negative direction,
but because “g” was defined as 9.8 m/s/s (versus -9.8 m/s/s), the unembedded
negative sign is needed. Know that ALL TERMS in N.S.L. expressions should be

magnitudes.

b.) As was pointed out earlier, the f.b.d. we generated for Part a works for Part b,
and the scale reading will be the same, also.

Starting with a free body diagram, see the sketch to the right: T

There are three things to notice about this:

1.) Being in equilibrium, the tension and gravitational forces will
have to cancel. That means their magnitudes will be the same. |
drew the two force vectors to be the same length. | DIDN'T
HAVE TO DO THIS. Free body diagrams conserve orientation of
vectors, but they are not necessarily drawn to scale magnitude-
wise.

2.) | presented the forces acting where they are really acting on the body mg
(that is, gravity is acting at the body’s center of mass). This didn’t have to

be the case. | could as easily have drawn it like the mini-sketch example

below. Force orientation will always matter, but force placement won’t

until we begin to deal with torques and rotational motion.

3.) lused a “T” to denote the magnitude of the tension force and an
“mg” for the magnitude of the gravitational force. You may run into an
alternate version of E; and Fo. Although your book uses the former,
use the latter if your teachers instructs you to do so.

c.) Part cis a little tricky for its own reasons. Each of the masses
is held up by a rope similarly to Parts a and b, but there are two scale
of them being supported by a third rope that the scale is
attached to, so the net effect is for the scale to register twice the
49.0 newtons that were generated in Parts a and b. That is, the
answer is 98.0 newtons. (Assuming you aren’t asked to derive
results, what I've just stated is the way you should think through
a problem, if you can, on an AP test.)
To be complete, | have included the f.b.d’s you’d need to solve
for the scale value using the formal approach to N.S.L.

In the formal approach, it is always best to start (and finish

off) one object in the system before messing with the

second (or third). As such, | will start with a f.b.d. of the T
ball, then write out N.S.L. for that situation. That is:

PR 0
T—mg:yﬁy mg

= T=mg=490N

a)




Now for the pulley: Noting that ideal pulleys simply redirect

the line of tension (that is, the tension magnitude is the same Teae
on either side of the pulley), and additionally noticing that the

pulley was said to be massless (so there is no “mg” term

acting at its center of mass), we can draw the f.b.d. shown to

the right, then write:
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scale

Solving the ball’s equation and the pulley’s equation simultaneously yields a
scale value of 98 newtons, as expected. Again, in general and especially when
taking an AP test, if you are NOT specifically told to derive your results, use
any thinking approach you can to get your answers.

BIG NOTE: Because the ball part of this problem suggests that “T = mg,”
students sometimes get it into their heads that “T” is always equal to “mg.”

5.)

The f.b.d. to the right is technically correct, but at
some point we are going to want to break the
gravitational force “mg” into its components along
the incline and perpendicular to the incline. Why?
Although other problems will have better reasons for
doing this (I'll point them out when we get there),
for this problem we want to know gravitational
component that the tension “T” is counteract. That
sought-after force is equal to the component of
gravity along the incline.

The problem, as you can see in the second sketch, is
that with the normal force in it’s technically correct
position, things get cluttered. The solution, and this |
is perfectly acceptable to do in problem in which
torques are not being dealt with, is to slide the
normal force into the position shown in the last
sketch. In that way, we can easily see and deal with
the needed components of gravity, and we haven’t
compromised the orientation of any of the vectors.

7.)

d.) What do we know about a tension force? It
will always be directed AWAY FROM the object
experiencing it, and it’s algebraic symbol is “T.”
What about gravity? It is always directed
toward the center of the earth and AS LONG
AS YOU ARE CLOSE TO THE EARTH’S SURFACE
its magnitude is “mg.” We are about to run
into another of the five standard force you’ll
be working with in this section. That force is
called a NORMAL FORCE, and it is a force of
support that is ALWAYS PERPENDICULAR to the
surface that provides it.

Looking at the f.b.d. on the block, TENSION and GRAVITY make sense. The
additional force is a force of support, a NORMAL FORCE, provided by the
incline, as shown.

6.)

So using that last f.b.d. and adding a
coordinate system whose axes are up the
incline (the x-direction) and perpendicular to
up the incline (the y-direction), we can write:

ZFX: 0
T—mgsin6=}2€x

= T=mgsinO
= (5.00 kg)(9.80 m/s’)sin 30°
=245N

The only additional bit of nastiness is in justifying that the angle used to
determine gravity’s components is really the angle of the incline. A proof of
that is shown on the next page. You don’t have to read this is you believe the
angle is as presented. The proof is provide, though, with the understanding
that once done, we will know that the angle of the incline will ALWAYS BE THE
SAME AS the angle between the vertical and the normal on an incline.

8)




Specifically: Look at the sketch. The right triangle
has an angle 6 and an angle 90° — 0 in it, where
the latter angle is bordered by a line in the vertical.

Now notice that the line of the incline and

the line of the normal are at right angles to ‘“eoi/“l/ RN
one another (this is denoted by the small - | \\
red square). /’/\9 | \

It follows that the angle between the
normal and the vertical is 6, as shown.

line of vertical

9.)




